N-Sulfonylamidines. Part IV ¹. Intramolecular Cyclization of N-Sulfonylamidines of 2-Oxoacids: a new Synthesis of 3-Aminoisothiazole S.S-dioxides.

Francesca Clerici*a, Giuseppe Marazzib and Marcello Tagliettic.

a) G.E.T. Laboratori, Ricerca e Sviluppo, V. Alighieri 73, I-18038-Sanremo (Imperia), Italy.

b) Prassis, Istituto di Ricerche Sigma Tau, V. Forlanini 1/3, Settimo M. (Milano), Italy.

c) Istituto di Chimica Organica, Facoltà di Farmacia, Università di Milano, V. Venezian 21, I-20133- Milano, Italy.

(Received in UK 14 February 1992)

Key Words: N-Sulfonylamidines/3-Amino-isothiazole S,S-dioxides/ Intramolecular Cyclization/ Isothiazoline S,S-dioxides/
Configuration/

Abstract: N-alkylsulfonylamidines of α -ketoacids 3 bearing both a carbonyl group and at least one H-atom near to the SO_2 group give easily an intramolecular ring-closure reaction by action of potassium t-butoxide producing the 3-amino-4,5-dihydro-4-hydroxy-isothiazole S,S-dioxides 4. Compounds 4 are transformed by thionyl chloride into the corresponding chloro-derivatives 5 which in turn are dehydrochlorinated by potassium carbonate to substituted 3-amino-isothiazole S,S-dioxides 6.

For several years we have been actively interested in the synthetic exploitation of N-sulfonylamidines²⁻⁴. More particularly, we have shown that a N-sulfonylamidine having at least an hydrogen atom α to the SO₂ group reacts with strong bases producing a carbanionic intermediate which undergoes an intramolecular cyclization affording enamines, thiazete-S,S-dioxides and β -sulfonylenamines through a thiazetidine intermediate¹. This useful result prompted us to investigate other classes of N-sulfonylamidines with intrinsic possibility of intramolecular cyclization. Our results with N-alkylsulfonylamidines of α -oxoacids are reported in the present paper.

Amidines. As shown in Scheme 1 the amidines 3 were obtained by reaction of sulfonylazides 1 with enamines 2. Azides 1 are known compounds and were prepared according to conventional procedures⁵. The hitherto unknown enamines 2b,c were prepared as described for 2a⁶, i.e. by reaction of diethylamine with the corresponding 1-aryl-3-phenyl-2,3-dibromo-1-propanones, whereas compounds 2d-f were obtained according to the method which has been reported for the diphenyl analogue of 2d⁶, i.e. by addition of the appropriate

3228 F. CLERICI et al.

amine to the corresponding 1-aryl-3-phenyl-2-bromoprop-2-en-1-one and base catalyzed elimination of hydrogen bromide. The reaction of the azides 1 with the enamines 2 was performed in boiling ethanol. Amidines 3 are produced through 1,3-dipolar cycloaddition of the azide to the enamine double bond. The intermediate v-triazoline adducts are quite unstable, as observed in analogous cases⁸, and cannot be isolated. Instead, they spontaneously undergo cycloreversion with elimination of phenyldiazomethane producing compounds 3.

Table 2 2 NR_2 diethylamino 8 C_6H_5 diethylamino ь p-CH₃-C₆H₄ ¢ p-CH₃O-C₆H₄ diethylamino d morpholino e pyrrolidino f p-CH₃O-C₆H₄ morpholino

	R2 ^C	H-SO ₂ -N=C-C	-Ar	
3	Ar	R ¹	R ²	NR ₂
a	C ₆ H ₅	C ₆ H ₅	Н	diethylamino
ь	p-CH ₃ -C ₆ H ₄	C ₆ H ₅	Н	diethylamino
C	p-CH ₃ O-C ₆ H ₄	C ₆ H ₅	н	diethylamino
d	C ₆ H ₅	o-NO2-C6H4	Н	diethylamino
е	C ₆ H ₅	н	Н	diethylamino
f	p-CH ₃ -C ₆ H ₄	Н	CH ₃	morpholino
g	C ₆ H ₅	Н	CH ₃	diethylamino
h	p-CH ₃ -C ₆ H ₄	Н	H	diethylamino
i	p-CH ₃ -C ₆ H ₄	Н	H	morpholino
ì	p-CH ₃ O-C ₆ H ₄	H	H	diethylamino
m	С ₆ Н ₅	CH ₃	CH ₃	diethylamino
n	p-CH ₃ -C ₆ H ₄	Н	C ₆ H ₅	morpholino
0	p-CH ₃ O-C ₆ H ₄	Н	H	pyrrolidino
p	p-CH ₃ O-C ₆ H ₄	Н	H	morpholino

Table 4

4	Ar	R ¹	R ²	NR ₂
a b c d e f g h i l m n o p	C ₆ H ₅ C ₆ H ₄ P-CH ₃ -C ₆ H ₄ P-CH ₃ -C ₆ H ₄ P-CH ₃ O-C ₆ H ₄ P-CH ₃ O-C ₆ H ₄ C ₆ H ₅ C ₆ H ₅	C ₆ H ₅ H C ₆ H ₅ H C ₆ H ₅ H 0-NO ₂ -C ₆ H ₄ H H CH ₃ H	H C ₆ H ₅ H C ₆ H ₅ H C ₆ H ₅ H C-NO ₂ -C ₆ H ₄ H CH ₃ H	diethylamino diethylamino diethylamino diethylamino diethylamino diethylamino diethylamino diethylamino diethylamino morpholino morpholino diethylamino diethylamino diethylamino diethylamino diethylamino diethylamino diethylamino
q r s t u v	C ₆ H ₅ P-CH ₃ -C ₆ H ₄ P-CH ₃ -C ₆ H ₄ P-CH ₅ -C ₆ H ₄ P-CH ₃ -C ₆ H ₄	н Н СН ₃ С ₆ Н ₅ Н Н Н	н н СН ₃ н С ₆ Н ₅ н	morpholino diethylamino diethylamino morpholino morpholino pyrrolidino morpholino

Table 5

5	Ar	R^1	R^2	NR ₂
a b c d e f g	p-CH ₃ O-C ₆ H ₄ p-CH ₃ O-C ₆ H ₄ C ₆ H ₅ p-CH ₃ -C ₆ H ₄ p-CH ₃ -C ₆ H ₄ p-CH ₃ O-C ₆ H ₄ p-CH ₃ -C ₆ H ₄ p-CH ₃ -C ₆ H ₄	C ₆ H ₅ H H H H H H H C ₆ H ₅	H C ₆ H ₅ H H H H C ₆ H ₅	diethylamino diethylamino diethylamino diethylamino morpholino morpholino morpholino
i 1	p-CH ₃ O-C ₆ H ₄ p-CH ₃ O-C ₆ H ₄	H H	H H	pyrrolidino morpholino

Table 6

6	l ^{Ar}	\mathbb{R}^1	NR ₂
8	p-CH ₃ O-C ₆ H ₄	C ₆ H ₅	diethylamino
b	p-CH ₃ -C ₆ H ₄	H	diethylamino
c	р-СН ₃ О-С ₆ Н ₄	H	diethylamino
d	p-CH ₃ -C ₆ H ₄	C ₆ H ₅	morpholino
e	p-CH ₃ O-C ₆ H ₄	H	pyrrolidino
f	p-CH ₃ O-C ₆ H ₄	Н	morpholino
	ļ		

3230 F. CLERICI et al.

Isothiazolines 4,5 and Isothiazoles 6. Compounds 3 represent a new class of N-sulfonylamidine, containing at once, an acidic hydrogen α to the SO_2 group, and a carbonyl group directly bonded to the amidine carbon. Owing to these structural features they readily cyclized when treated with alkaline alkoxides. The best results were obtained by using potassium t-butoxide.

As a rule the ring-closure products, i.e. the corresponding 3-amino-4-hydroxy-4,5-dihydroisothiazoles 4 (Scheme 1), were obtained in good yields. Clearly, products 4 are formed by deprotonation of the starting compounds α to the SO₂ group and intramolecular attack of the resulting carbanion at the CO group.

On reaction with excess of thionyl chloride at reflux, compounds 4 smoothly produced the corresponding chloro-derivatives 5 in good yields by substitution of the hydroxy group. When R² corresponds to hydrogen atom, compounds 5 can readily be dehydrohalogenated to the 3-aminoisothiazole S,S-dioxide derivatives 6. This reaction was best performed by potassium carbonate in acetone; triethylamine gave poor results. Other bases, particularly nucleophilic bases as ammonia and primary and secondary amines, gave complex reaction mixtures which are currently under study.

A thermal elimination was observed in a variable temperature ¹H-NMR experiment. However, this way to transform 5 to 6 is not suitable for practical purposes. Direct production of compounds 6 from the products 4 by dehydration failed to give acceptable results since the hydroxy compounds 4 appear to be resistant to some common dehydrating agents (e.g. P₂O₅, ZnCl₂, KOH, acetic anhydride, trace of mineral acids, treatment with bases and so on).

Conformation and configuration of isothiazoles. The structures of all products were confirmed by analytical and spectroscopic (IR, 1 H-NMR and MS) evidence. In compounds 4 and 5, when R 1 is different from R 2 , two diastereomeric products are to be expected. Indeed, in all cases a mixture of both diastereomers in a nearly 1 to 1 ratio was obtained. Most of them were separated in a pure condition and their configuration was established by 1 H-NMR. For the sake of clarity only the pair 4a and 4b will be discussed in detail in the following since the results can straightforwardly be extended to all cases. As shown in Table 8 the 1 H-NMR spectrum (CDCl₃) of 4b is characterized by a signal (singlet) at 5.2 δ corresponding to H-5 and another singlet at 5.5 δ associated with the OH group. The corresponding values for 4a are 4.6 δ and 3.5 δ respectively. From the observed chemical shifts a configurational assignment can be inferred taking into account the shielding effect which should be exerted by the aromatic rings on cis substituents on C-4. According to this reasoning the 4R*5S* and 4R*5R* configurations can be assigned to 4b and 4a, respectively. To confirm this assignment a NOESY spectrum was recorded, showing a clear correlation between the H and OH groups only for compound 4a in which they are cis. On analogous evidence the

configuration was assigned to the other diastereomeric pairs. A similar situation was observed in the case of compounds 5. For example, in 5b the H-5 resonance is found downfields with respect to 5a. In agreement with this the NOESY spectrum of 5a evidences a correlation between H-5 and the aromatic hydrogens of the 4-methoxyphenyl group on C-4, which is absent in 5b. A striking feature of the ¹H-NMR spectrum of all compounds 4,5 and 6 is the great complexity of the signals associated with the morpholino, pyrrolidino and diethylamino groups bonded to C-3, showing the magnetic non-equivalence of chemically identical hydrogens. This points to a rotational barrier about the C-N bond which can be explained by an extensive conjugation of the amidine system. Variable temperature ¹H-NMR experiments which evidenced the coalescence of the signals at about 80-90° C. By applying the Arrhenius equation rotational barriers of about 17-18 Kcal/mol were calculated for compounds 4,5 and 6 respectively, which is in fair agreement with structurally similar cases^{9,10,11}.

EXPERIMENTAL

IR spectra were recorded on a Pye Unicam SP3-200 S Philips spectrophotometer. ¹H-NMR spectra (tetramethylsilane as internal standard, CDCl₃ as solvent or DMSO in variable temperature experiments): Bruker AC 200, Bruker AC 300 equipped with a VT 1000 Unit to perform variable temperature experiments. TLC: ready-to-use silica gel plates with cyclohexane/ethyl acetate or diethyl ether as eluant. Column chromatography: silica gel with the eluant indicated. Melting points: not corrected. M.S.: Varian Mat INCOS 50 instrument.

Sulfonyl azides 1a-e. Products 1a,b,c,d are known compounds ^{1,12,13}. Sulfonyl azide 1e was prepared from the corresponding sulfonyl chloride¹⁴ according to a published procedure⁵.

1e: C₇H₆N₄O₄S (272); Yield: 79%; Calcd.: C 34.56% H 2.52% N 22.88% Found: C 34.72% H 2.49% N 23.14%. M.p.: 97°.

Enamines 2a-f. Enamine 2a is known compound⁶. Enamines 2b,c,d,e,f were prepared according to published procedures^{6,7}.

2b: C₂₀H₂₃NO; Calcd.293 Found 293 (MS); ¹H-NMR (CDCl₃): 5.6 δ (CH=C-N).

2c: C₂₀H₂₃NO₂; Calcd.309 Found 309 (MS); ¹H-NMR (CDCl₂): 5.6 δ (CH=C-N).

2d: C₂₀H₂₁NO₂; Calcd.307 Found 307 (MS); ¹H-NMR (CDCl₃): 5.7 δ (CH=C-N).

2e: C₂₁H₂₃NO; Calcd.305 Found 305 (MS); ¹H-NMR (CDCl₃): 5.6 δ (CH=C-N).

2f: C₂₀H₂₁NO₃; Calcd.323 Found 323 (MS); ¹H-NMR (CDCl₂): 5.8 δ (CH=C-N).

General procedure for the preparation of N-sulfonylamidines 3 a-p. A solution of azide 1 in ethanol

3232 F. CLERICI et al.

was dropped into a solution of enamine 2 in the same solvent under stirring at room temperature. After the addition the mixture was refluxed until the reactants were no longer detectable by TLC (about 8 hours). The solvent was evaporated and the residue was crystallized from diethyl ether. In other cases chromatographic purification of the reaction mixture (eluant cyclohexane/ethyl acetate 4:6) was performed. Analytical and spectroscopic data are listed in Table 7.

General procedure for the preparation of 3-amino-4,5-dihydro-4-hydroxy-isothiazole S,S-dioxides 4 a-z. To a stirred solution of the appropriate N-sulfonylamidine 3 (1 mol.) in anhydrous THF, under nitrogen, an equimolecular amount of potassium t-butoxide was added. Stirring was continued for about 6 hours and the end of the reaction was checked by TLC (cyclohexane/ethyl acetate 4:6). The reaction mixture was evaporated and neutralized with a 10% HCl solution, and the product was extracted into CH₂Cl₂ and washed twice with water. The organic layer was separated, dried over Na₂SO₄ and filtered, and the solvent was evaporated under reduced pressure. Product 4 was crystallized from diethyl ether. The pairs of diastereomers 4a,b; 4c,d; 4e,f; 4n,o; 4t,u; were separated by flash chromatography (eluant diethyl ether/petroleum ether 1:1). From the mixture 4n,o only 4o could be obtained in a pure form. 4n was always obtained in mixture with 4o and attempts to purify it failed. Analytical and spectroscopic data are listed in Table 8.

General procedure for the preparation of 3-amino-4-chloro-4,5-dihydroisothiazole S,S-dioxides 5a-1. Product 4 was refluxed in SOCl₂ until disappearance of the reactant (TLC). The solvent was then distilled off under reduced pressure; the residue was neutralized with 10% NaHCO₃ solution, extracted into CH₂Cl₂ and washed with water. The organic layer was separated, dried over Na₂SO₄ and filtered; the solvent was evaporated under reduced pressure, and the residue was crystallized from diethyl ether. The pairs of diastereomers 5a,b; 5g,h; were separated as described above by flash chromatography (eluant diethyl ether/petroleum ether 1:1). Analytical and spectroscopic data are listed in Table 9.

General procedure for preparation of 3-amino-isothiazole S,S-dioxides 6. To a solution of 5 in anydrous acetone an equimolecular amount of solid K₂CO₃ was added under vigorous stirring. The suspension was refluxed until complete disappearance of the reactant (TLC eluant cyclohexane/ethyl acetate 4:6, about 48 hours). The solvent was then evaporated under reduced pressure and the residue was taken up in 10% HCl solution, extracted with CH₂Cl₂ and washed twice with water. The organic layer was separated, dried over Na₂SO₄ and filtered, and the solvent was evaporated under reduced pressure. The residue was crystallized from diethyl ether. Analytical and spectroscopic data are listed in Table 10.

¹ H-NMR	0.9 (t, 1=7Hz, 3.H, CH ₂); 1.2 (t, 1=7Hz, 3.H, CH ₃ .); 3.3-3.8 (m, 4.H, CH ₂); 4.2 (s, 2.H, CH ₂); 7.1-7.7 (m, 10H Aryl H).	0.9 (t, 1=7Hz, 3H, CH3); 1.2 (t, 1=7Hz, 3H, CH3); 2.3 (s, 3H, CH3); 3.0 (q, 1=7Hz, 2H, CH5); 3.3-3.6 (m, 2H, CH2); 7.2 (s, 2H, CH2); 7.2 (AB system, 2H, 1=8Hz, Aryl H); 7.3 (s, 5H, Aryl H); 7.6 (AB system, 1=8Hz, 2H, Aryl H).	0.9 (t, 1=7Hz, 3H, CH2); 1.1 (t, 1=7Hz, 3H, CH3); 3.1 (q, 1=7Hz, 2H, CH2); 3.3-3.7 (m, 2H); 3.8 (s, 3H, OCH3); 4.2 (s, 2H, CH3); 6.8 (AB system, 1=8Hz, 2H, Aryl H); 7.3 (s, 5H, Aryl H); 7.6 (AB system, 1=8Hz, 2H, Aryl H)	1.0 (t, 1=7Hz, 3H, CH ₂); 1.3 (t, 1=7Hz, 3H, CH ₂); 3.1 (q, 1=7Hz, 2H, CH ₂); 3.4-3.8 (m, 4H, CH ₂); 4.2 (s, 2H, CH ₂); 7.3-8.0 (m, 9H, Aryl H).	0.9-1.3 (m, 6H, CH ₃); 2.8-3.5 (m, 4H, CH ₂); 3.7 (s, 3H, CH ₃); 7.2-8.0 (m, 5H, Aryl H).	1.3 (t, J=8Hz, 3H, CH ₃); 2.4 (s, 3H, CH ₃); 3.0 (g, J=8Hz, 2H, CH ₂); 3.2 (m, 2H, CH ₂ morph.); 3.6 (m, 2H, CH ₂ morph.); 3.8-4.0 (m, 4H, CH ₂ O _{morph.}); 7.2 (AB system, J=8Hz, 2H, Aryl H); 7.8 (AB system, J=8Hz, 2H, Aryl H).	0.9-1.5 (m, 9H, <u>CH</u> 3CH ₂ N + <u>CH</u> 3CH ₂ S); 2.9-3.9 (m, 6H, CH ₃ <u>CH</u> 2N + CH ₃ <u>CH</u> 2S); 7.3-8 (m, 5H, Aryl H).	1.1 (t, 1=7Hz, 3H, CH3); 1.3 (t, 1=7Hz, 3H, CH3); 2.4 (s, 3H, CH3); 2.9 (s, 3H, CH30O ₂); 3.25 (s, 1=7Hz, 2H, CH2); 3.2-3.9 (m, 2H, CH ₂); 7.3 (AB system, 1=8Hz, 2H, Aryl H); 7.8 (AB system, 1=8Hz, 2H, Aryl H).	2.4 (s, 3H, CH3); 3.0 (s, 3H, CH3SO ₂); 3.1.4.0 (m, 8H, CH _{2morph.}); 7.3 (AB system J=8Hz, 2H, Aryl H); 7.9 (AB system, J=8Hz, 2H, Aryl H).	1.0 (t, 1=7Hz, 3H, CH3); 1.2 (t, 1=7Hz, 3H, CH3); 2.9 (s, 3H, CH3SO ₂); 3.1 (q, 1=7Hz, 2H, CH3); 3.3-3.8 (m, 2H, CH3); 3.9 (s, 3H, CH3O); 6.9 (AB system, 1=8Hz, 2H, Aryl H); 7.9 (AB system, 1=8Hz, 2H, Aryl H).	0.9-1.1 (m, 12H,(CH ₃) ₂ CH + CH ₃ CH ₂ N); 2.9-3.9 (m, 5H, (CH ₃) ₂ CH + CH ₃ CH ₂ N); 7.3-8.0 (m, 5H, Aryl H).	 2.5 (a, 3H, CH₃); 3.3-3.4 (m, 2H, CH₂ morph.); 3.5-3.6 (m, 2H, CH₂ morph.); 3.6. 3.8 (m, 4H, CH₂O_{morph.}); 4.4 (a, 2H, CH₂); 7.2 (AB system. J=8Hz, 2H, Aryl H); 7.5 (AB system, J=8Hz, 2H, Aryl H). 	 1.4-1.9 (m, 6H, CH₂ pyrnol.); 3.0 (s, 3H, CH₃SO₂); 3.2-3.3 (m, 2H, CH₂ pyrnol.); 3.7-3.8 (m, 2H, CH₂ pyrnol.); 3.8 (s, 3H, CH₃O); 6.9 (AB system, I=8Hz, 2H, Aryl. H); 7.9 (AB system, I=8Hz, 2H, Aryl.H). 	5 3.0 (s, 3H, CH ₂ SO ₂); 3.2-3.4 (m, 2H, CH ₂ morph.); 3.5-3.6 (m, 2H, CH ₂ morph.); 3.8-3.9 (m, 4H, CH ₂ morph.); 3.9 (s, 3H, CH ₂ O); 7.0 (AB system, J=8Hz, 2H, Aryl H); 7.0 (AB
g z	7.8	7.5	7.2 (7.1)	10.4 (10.4)	9.9 (8.8)	8.6 (8.6)	9.5	9.4 (9.4)	9.0	9.0 (8.9)	9.0	72 (7.2)	8.6 (8.4)	8.6 (8.5)
Calcd.(Found)	_	6.4 (6.4)	6.2 (6.1)	5.2 (5.1)	6.4 (6.5)	6.2	6.7	6.7	5.8	6.4	6.4 (7.3)	5.7 (5.7)	6.2 (5.9)	5.5 (5.6)
Calc	63.7 (64.0)	64.5 (64.4)	61.8 (61.5)	56.6 (56.3)	55.3 (55.6)	55.5 (55.6) (56.7 (56.6) (56.7 (56.6) (54.2 (54.0)	53.8 (53.5)	58.1 (57.8)	62.2 (62.0)	55.5 (55.4)	51.5 (51.3)
M.w.	328	342	358	403	282	324	396	396	310	312	310	402	324	326
Ψ.	154	106-108	120	143	80	119	100-101	123	160	116	ጽ	168	700	165
Yield %	70	28	ន	20	99	92	8	92	8	55	6	8	£	57
Prod.	æ	م	u	ਰ	u	-	60	a	-	-	8	=	•	ρ.

Table 8
Analytical and Spectroscopic data for compounds 4

Prod.	Yed	M.p.	M.w.	Calcd	Calcd (Found)	-	¹ H-NMR
æ	# (F	.c	328	င် (၁.၈)		Z 8. 8	0.7 (t, J=7Hz, 3H, CH3); 1.3 (t, J=7Hz, 3H, CH3,); 3.0-3.2 (m, 2H, CH2); 3.3 (s, 1H, OH); 3.4- 3.6 m, 1H, CH3/; 3.6.3.7(m, 1H, CH3/; 4.6 (s, 1H, CH-SO); 7.1-7.4 (m, 10H, Azv) H).
۵	₹	240	328		6.1	7.8 (9.7)	0.9 (t. 1–7Hz, 3H, CH ₂); 1.2 (t. 1–7Hz, 3H, CH ₂); 2.8-2.9 (m, 1H, CH ₂); 3.4-3.3 (m, 2H, CH ₂); 3.6-3.7 (m, 1H, CH ₂); 5.2 (s, 1H, CH-50 ₂); 5.3 (s, 1H, OH); 7.1-7.4 (m, 10H, Aryl H).
v	æ	166	342	64.5 (5.3)	6.4 4.6	73	08 (t. 1=7Hz, 3H, CH ₃); 1.3 (t. 1=7Hz, 3H, CH ₃); 2.4 (s. 3H, CH ₃); 3.2 (s. 1=7Hz, 2H, CH ₂); 3.3-3.5 (m. 1H, CH ₂); 4.4 (H, CH ₂); 7.1-7.4 (m. 9H, A ₂₂) H).
ש	3	180	342	8 8 8 45	6.4	73	0.9 (i. 1=774z, 3H, CH ₃); 1.2 (i. 1=74z, 3H, CH ₃); 2.3 (i. 3H, CH ₃); 3.1 (ii. 2H, CH ₂); 3.2.3.6 (ii. 2H, CH ₂); 5.2 (i. 1H, CH ₃); 7.1 (ii. 5H, Aryl H); 7.2.7.4 (iii. 5H, Aryl H).
v	55 ⁸⁾	160	358	61.8 (61.5)	6.2 (6.1)	7.2	0.8 (t, 1=7Hz, 3H, CH3); 1.4 (t, 1=7Hz, 3H, CH3); 3.1(q, 1=7Hz, 2H, CH2); 3.3 (s, 1H, OH); 3.4-3.6(m, H, CH2); 3.7-3.9 (m, 1H, CH2); 3.8 (s, 3H, CH3O); 4.6 (s, 1H, CH-SO2); 6.9-7.4 (m, 9H, Aryl H).
-		185	328	61.8 (61.8)	6.2	7.2 (7.1)	0.9 (t, 1=7Hz, 3H, CH ₃); 1.2 (t, 1=7Hz, 3H, CH ₃); 2.9-3.6 (m, 4H, CH ₂); 3.7 (s, 3H, CH ₃ O); 5.2 (s, 1H, CH ₂ O); 5.3 (s, 1H, OH); 6.7 (AB system, 1=8Hz, 2H, Aryl H); 6.9-7.4 (m, 7H, Aryl H).
8 + P (4)	57	~	403	56.6 (56.9)	5.2	5.2 10.4 (5.2) (10.4)	0.6 (m, 6H, CH3); 1.1 (m, 6H, CH3); 3.1-3.6 (m, 11H, CH2+CH-SO _Z +OH); 6.8-8.3 (m, 19H, Aryl H+ OH).
	8	25	282	55.3 (55.1)	6.4	9.9 (7.9)	0.8 (t, J=6.5Hz, 3H, CH3); 1.3 (t, J=6.5Hz, 3H, CH3); 3.3 (q, J=6.5 Hz, 2H, CH2); 3.5 (q, J=6.5Hz, 2H CH2); 3.6 (AB system, J=13Hz, 1H, CH-802); 3.8 (t, 3H, CH30); 3.9 (AB system, J=13Hz, 1H, CH-802); 5.5 (t, 1H, OH); 6.9 (AB system, J=8Hz, 2H, Aryl H); 7.4 (AB system, J=8Hz, 2H, Aryl H).
b)	40 a)	_	324	55.5 (55.2)	6.2	8.6 (8.6)	1.3 (d. J-8Hz, 6H, CH3); 2.3 (s. 6H, CH3); 2.8 4 (m. 19H, CH _{2morph} .+ CH-SO ₂ + OH); 4.5 (s. 1H, OH); 7.0-7.3 (m. 8H, Aryl H).
୍ତ କ	63 ^{a)}	`	296	56.7 (56.6)	6.9)	_	0.8 -1.0 (m, 6H, <u>CH</u> 3CH ₂); 1.2-1.4 (m, 3H, <u>CH</u> 3CH); 3.0-3.6 (m, 4H, CH ₂); 3.9 (q, J=7Hz, 1H, CH ₃ <u>CH</u>); 5.4 (s, 1H, OH); 7.2-7.4 (m, 5H, Aryl H).
•		2 2	296	56.7 (57.0)	6.7 (7.1)		0.6 (t, J-6.6Hz, 3H, CH ₂); 1.2 (t, J-6.6Hz, 3H, CH ₂); 1.2 (d, J-7Hz, 3H, <u>CH</u> ₂ CH); 3.0-3.3 (m, 2H, CH ₂); 3.4 (q, J-6.6Hz, 2H, CH ₂); 3.6 (q, J-7Hz, 1H, <u>CH</u> ₂ CH); 4.6 (s, 1H, OH); 7.3-7.4 (m, 5H, Aryl H).

0.8 (t, 1=7Hz, 3H, CH3); 1.2 (t, 1=7Hz, 3H, CH3); 2.3 (s, 3H, CH3); 3.3 (q, 1=7Hz, 2H, CH2); 3.3.3.5 (m, 2H, CH2); 3.6 (AB system, 1=15Hz, 1H, CH-SO ₂); 3.9 (AB system, 1=15Hz, 1H, CH-SO ₂); 7.2 (AB system, 1=8Hz, 2H, Aryl H).	2.4 (s, 3H, CH ₃); 3.1-3.8 (m, 8H, CH _{2morph.}); 3.6 (AB system, J=15Hz, 1H, CH-SO ₂); 3.9 (AB system J=15Hz, 1H, CH-SO ₂); 5.5 (s, 1H, OH); 7.2 (AB system, J=8Hz, 2H, Aryl H); 7.4 (AB system, J=8Hz, 2H, Aryl H).	0.8 (t, J=7Hz, 3H, CH ₃); 1.2 (t, J=7Hz, 3H, CH ₃); 3.2 (q, J=7Hz, 2H, CH ₂); 3.4 (q, J=7Hz, 2H, CH ₂); 3.6 AB system, J=15Hz, 1H, CH-SO ₂); 3.7 (s, 3H, CH ₃ O); 3.9 (AB system, J=15Hz, 1H, CH-SO ₂); 6.9 (AB system, J=8Hz, 2H, Aryl H).	0.9 (t, 1=7Hz, 3H, CH ₃); 1.2 (t, 1=7Hz, 3H, CH ₃); 1.5 (s, 6H, CH ₃ C-SO ₂); 2.9-3.5 (m, 2H, CH ₂); 3.6 (s, 1H, OH); 3.7-3.9 (m, 2H, CH ₂); 7.4 (m, 5H, Aryl H).	2.4 (s, 3H, CH ₃); 3.0-3.4 (m, 4H, CH ₂ morph.); 3.5 (s, 1H, OH); 3.6-4.1 (m, 4H, CH ₂ morph.); 4.6 (s, 1H, CH-SO ₂); 7.0-7.4 (m, 9H, Aryl H).	2.3 (s, 3H, CH ₃); 3.0-4.0 (m, 8H, CH _{2morph.}); 5.2 (s, 1H, CH-SO ₂); 5.5 (s, 1H, OH); 6.9-7-4 (m, 9H, Aryl H).	1.4-1.8 (m., 6H. CH ₂ pyrrol.); 3.1-3.5 (m., 4H. CH ₂ pyrrol.); 3.6 (AB system, J=14Hz, 1H, CH-SO ₂); 3.7 (s. 1H, OH); 3.8 (s. 3H, CH ₃ O); 4.0 (AB system, J=14Hz, 1H, CH-SO ₂); 6.8 (AB system, J=8Hz, 2H, Aryl H); 7.4 (AB system, J=8Hz, 2H, Aryl H).	3.2.3.4 (m. 3H, CH _{2morph}); 3.5.3.8 (m. 5H, CH _{2morph}); 3.8 (s. 3H, CH ₃ O); 3.7 (AB system, J=14Hz, 1H, CH-5O ₂); 5.4 (s. 1H, OH); 6.9 (AB system, J=8Hz, 2H, Aryl H); 7.4 (AB system, J=8Hz, 2H, Aryl H).
9.4	9.0	9.0 (8.5)	9.0	7.2 (7.0)	7.2	8.6 (8.2)	8.6
6.7 (7.1)	5.8 (5.7)	6.4 (6.3)	6.4	5.7 (5.6)	5.7	6.2 (6.6)	5.5 (5.7)
56.7 (57.0)	54.2 (54.0)	53.8 (53.3)	58.1 (58.2)	62.2 (62.0)	62.2 (62.0)	55.5 (55.9)	51.5 (51.4)
296	310	312	310	402	402	324	326
nuation) 174	238	171	168	240	211	185	138
Table 8 (continuation) p 70 174	74	82	2	g S	3	90	89
Table p	ਰਾ	la .	99	.	2	>	N

a) Total yield of the isolated mixture of the two disstancemers - b) not separated - c) only an impure sample was obtained without a definite m.p.

	punoduo
	a for co
	pical dat
	pectroscol
	l and S
Table 9	Analytica

tan famour	1						
Prod.	Yield %	M.p.	M.w.	S S S	Calcd.(Found)	(g) 7	¹ H-NMR
æ	, 6 (a)	→ 4	406.5	59.0 (59.0)	5.5 (5.6)	6.7 (6.9)	0.85 (t. J=6.5Hz, 3H, CH ₃); 1.3 (t. J=6.5Hz, 3H, CH ₃); 3.5 (qd. I _{Vic} =6.5Hz, I _{gem} =3Hz, 2H, CH ₂); 3.4-3.8 (m, 2H, CH ₃); 3.9 (s. 1H, CH ₃ O); 4.7 (s. 1H, CH ₅ O ₂); 6.9 (AB system, I=8Hz, 2H, Azyl H); 7.2-7.7 (m, 5H, Azyl H).
		167	406.5	59.0 (59.1)	5.5 (5.7)	6.7	1.1 (t, 1=7Hz, 3H, CH3); 1.3 (t, 1=7Hz, 3H, CH3); 2.9-3.1 (m, 2H, CH2); 3.4-3.6 (m, 2H, CH2); 3.7 (s, 3H, CH3O); 5.2 (s, 1H, CH-SO ₂); 6.8-7.4 (m, 9H, Aryl H).
u	23	108	300.5	51.9 (52.1)	51.9 5.7 9.3 (52.1) (5.4) (9.4)	9.3	0.8 (t, 1=7Hz, 3H, CH3); 1.3 (t, 1=7Hz, 3H, CH3); 3.0-3.1 (m, 1H, CH2); 3.1-3.2 (m, 1H, CH2); 3.5 m, 1H, CH2); 3.5-3.6 (m, 1H, CH2); 3.6-3.7 (m, 1H, CH2); 3.8 (AB system, 1=14.5Hz, 1H, CH-8O ₂); 4.1 (AB system, 1=14.5 Hz, 1H, CH-8O ₂); 7.4-7.5 (m, 5H, Aryl H).
7	8	23	314.5	53.4	6.0 8.7)	8.9	0.8 (t, 1=7Hz, 3.H, CH3); 1.3 (t, 1=7Hz, 3.H, CH3); 2.4 (s, 3.H, CH3); 2.9-3.3 (m, 2.H, CH2); 3.4-3.7 (m, 2.H, CH2); 3.8 (d, 1=14Hz, 1.H, CH-SO ₂); 4.1 (d, 1=14Hz, 1.H, CH-SO ₂); 7.2 (AB system, 1=8Hz, 2.H, Aryl H); 7.4 (AB system, 1=8Hz, 2.H, Aryl H); 7.4 (AB system, 1=8Hz, 2.H, Aryl H).
•	8	203-205	328.5	49.3 (49.5)	5.4 (5.3)	8.8 (8.5)	24(s, 3H, CH ₃); 3.0-3.6 (m, 4H, CH _{2morph} .); 3.7-4.0 (m, 4H, CH _{2morph} .); 3.8 (AB system, J=14Hz, 1H, CH-SO ₂); 4.2 (AB system, J=14Hz, CH-SO ₂); 7.2 (AB system, 2H, J=8Hz, Aryl H); 7.4 (AB system, J=8Hz, 2H, Aryl H).
•	3	102	330.5	50.8 (51.3)	5.7 (5.9)	8.5 (8.6)	0.9 (t, 1=6Hz, 3H, CH ₃); 1.2 (t, 1=6Hz, 3H, CH ₃); 3.0-3.3 (m, 2H, CH ₂); 3.4-3.7 (m, 2H, CH ₂); 3.8 (AB system, 1=13Hz, 1H, CH-SO ₂); 3.9 (s, 3H, CH ₃ O); 4.1 (AB system, 1=13 Hz,1H, CH-SO ₂); 6.9 (AB system, 1=8Hz, 2H, Aryl H); 7.4 (AB system, 1=8Hz, 2H, Aryl H).
50 0	78 a)	160	404.5	58.5 (58.7)	4.9 (4.9)	7.2 (7.2)	2.4 (s,3H, CH3); 2.9-4.1 (m, 8H,CH2morph,); 4.7 (s, 1H, CH-SO ₂); 7.0-7.5 (m, 9H, Aryl H).
æ		198	404.6	58.5 (58.6)	4.9 (4.7)	7.2 (7.2)	23 (s, 3H, CH ₃); 3.0-4.1 (m, 8H, CH _{2morph,}); 5.2 (s, 1H, CH-SO ₂); 6.8-7.3 (m, 9H, Ary) H).
	92	156 dec.	. 342.5	52.5 (55.4)	5.5 (5.8)	8.2 (7.9)	1.1 (m, 6H, CH2pyrnol.); 2.9-3-3 (m, 4H, CH2pyrnol.); 3.7 (AB system, J=15Hz, 1H, CH-SO ₂); 3.8 (s, 3H, CH ₃ O); 4.1 (AB system, J=15Hz, 1H, CH-SO ₂); 6.8 (AB system, J=8Hz, 2H, Aryl H); 7.4 (AB system, J=8Hz, 2H, Aryl H).
-	¥	145-147	344.5	48.8 (48.5)	5.0	8.0 (8.1)	3.0-3.8 (m., 8H, CH2 _{morph.}); 3.8 (s, 3H, CH ₃ O); 3.9 (AB system, J=14Hz, 1H, CH-so ₂); 4.1 (AB system, J=14Hz, 1H, CH-SO ₂); 6.9 (AB system, J=8Hz, 2H, Aryl H); 7.4 (AB system, J=8Hz, Aryl
a) Tota	al yield of t	the isolated	a) Total yield of the isolated mixture of the two diastereomers.	the two d	liastere	omers.	enjinj.

	for compour
Table 10	Analytical and Spectroscopical data

Calcd.(Found) 1H-NMR	64.9 5.9 7.4 0.8 (m, 3H, CH ₃); 1.4 (m, 3H, CH ₃); 2.9.3.1 (m, 2H, CH ₂); 3.4.3.5 (m, 2H, CH ₂) (5.8) (7.6) CH ₂); 3.8 (s, 3H, CH ₃ O); 7.0 (AB system, 1=7Hz, 2 H, Aryl H); 7.2 (AB system, 1=7Hz, 2H, Aryl H); 7.2.7.4 (m, 6H, Aryl H).	60.4 6.5 10.1 0.9 (m, 3H, CH ₃); 1.2 (m, 3H, CH ₃); 2.4 (s, 3H, CH ₃); 3.0-3.2 (m, 2H, CH ₂) (60.3) (6.6) (9.9) CH ₂); 3.4-3.7 (m, 2H, CH ₂); 6.9 (AB system, J=8H ₂ , 2H, Aryl H); 7.2 (AB system, J=8H ₂ , 2H, Aryl H); 7.3 (s, 1H, CH-SO ₂).	55.3 6.4 9.9 0.9 (m, 3H, CH ₃); 1.2 (m, 3H, CH ₃); 3.0-3.2 (m, 2H, CH ₂); 3.5-3.7 (m, 2H, (55.8) (6.0) (9.5) CH ₂); 3.8 (s, 3H, CH ₃ O); 6.9 (AB system, I=8Hz, 2H, Aryl H); 7.3 (s, 1H, CH-SO ₂).	65.2 5.4 7.6 2.4 (s, 3H, CH ₂); 2.9-4.0 (m, 8H, CH _{2morph.}); 7.0-7.4 (m, 10H, Aryl H). (65.0) (5.3) (7.7)	58.2 5.9 9.1 1.2-1.9 (m, 6H, CH2pyrrol.); 2.9-3.0 (m, 2H, CH2pyrrol.); 3.6-3.8 (m, 2H, (58.2) (6.1) (9.2) CH2pyrrol.); 3.8 (s, 3H, CH3O); 7.0 (AB system, 1=9Hz, 2H Aryl H); 7.2 (s, 1H, CH-SO ₂); 7.3 (AB system, 1=9Hz, 2H, Aryl H).	54.5 5.2 9.1 3.1-3.9 (m, 8H, CH _{2morph,}); 3.8 (s, 3H, CH ₃ O); 7.0 (AB system, J=8Hz,
Š,	(64.5)	60.4	553 (55.8)	65.2 (65.0) (3	58.2 (58.2)	22.
M.w.	370	278	294	368	306	308
Μ.P.	182	140	134	180	185	167
Prod. Yield sm M.p.	08	82	08	08	92	78
Prod.	æ	۵	v	9	U	-

REFERENCES

- 1. Clerici, F.; Pocar, D.; Rozzi, A. Tetrahedron 1991, 1937.
- 2. Clerici, F. Thesis "Dottorato di ricerca in Scienze Farmaceutiche", Università di Milano 1989, Italy.
- 3. Clerici, F.; Di Mare, A.; Gelmi, M. L.; Pocar, D. Synthesis 1987, 719.
- 4. Clerici, F.; Gelmi, M. L.; Rossi, L. M. Synthesis 1987, 1025.
- 5. Curtius, T.; Klavehen W. J. Prakt. Chem. 1926, 65.
- 6. Cromwell, N. H. J. Am. Chem. Soc. 1940, 1672.
- 7. Cromwell, N. H. J. Am. Chem. Soc. 1940, 3470; ibid. 1942, 308.
- 8. Pocar, D.; Rossi, L. M.; Trimarco, P. J. Het. Chem. 1979, 925 and references cited therein.
- 9. Martin, M. L.; Xian Yu Sun; Martin, G. J. Annual Reports on NMR spectroscopy 1985, 16.
- 10. Filleux, M. L.; Naulet, N.; Dorie, J. P.; Martin, G. J.; Pornet, J.; Migimac, L. Tetrahedron Lett. 1974, 1435.
- 11. Lunazzi, L.; Dondoni, A; Barbaro, G.; Macciantelli, G. Tetrahedron Lett. 1977, 1079.
- 12. Horner, L.; Christmann, A. Chem. Ber. 1963, 393.
- 13. Curtius, H. J. Prakt. Chem. 1921, 98.
- 14. Cignarella, G.; Teotino, U. J. Am. Chem. Soc. 1959, 4937.